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- -~ - Accompanying Note

An approximation technique for small

noise open loop control problems

This paper is concerned with the development of an

approxix.tation technique for the solution of a class of fixed

stopping time small noise open loop control problems. These

problems arise by adding an additive white noise term with a

small coefficient (2~ )
½ I to the system equations in the

deterministic control problem .

An approximation scheme is developed that has the advantage

that one finds approximately optimal controls simultaneously

for all sufficiently small c. The scheme requires the solution

of a generalized linear regulator problem which is solvable

easily numerically. The numerical method is given and an

example illustrating the efficiency of the method is also

presented.
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1. Introduction

- 

This paper is concerned wi th  the development of an approxi-

mation technique for the solution of a class of fixed stopping

time small noise open loop control problems. These problems

arise by adding an additive white noise term with a small

coei~~icient (2c)~~I to the system equations in the deterministic

control problem.

In earlier work [4] we derived expansions of class C~

in ~ of the optimal opei~~loop cost and control for a very

special class of problems in which each open loop generated

a nondegenerate Gaussian process. This property allowed the

conversion of the stochastic control problem into an equivalent

deterministic control problem. Under less restrictive assumptions

in [ ] we were able to derive a truncated expansion of the

optimal cost, but were unable to theoretically estaolish an

expansion of the optimal cost.

~4otivated by these previous results, we consider more

general open loop control problems in which each open loop

control does not necessarily generate a Gaussian process and

attempt to find “best” controls of the form U0 + cV. Here the

— func t ion  U ° denotes the optimal open loop deterministic control.

This approximation scheme has the advantage that one finds

approxii.tately optimal controls simultaneously for all sufficiently

sx..all c. This scheme leads to the selection of a control

+ LV which performs better (or at least as well) than U0

in the c problem for all sufficiently small c. The approxi—
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z~iatj On technique for  the calculation of V leads to a generalized

linear regulator problem which can be solved easily numerically.

This scheme is superior to and does not agree with the standard

secondary extreinal problem as is shown in §4.

Other work on small noise problems inc].uaes the completely

observable work of Fleming [1). Other approaches to open

loop control problems include ~1ortensen [ ~ ] and Vanslyke and

Wets [6].

2. The problem . Suppose that the state ~~( t )  evolves according

to the stochastic differential equations

(1) d~ = f(t,~~(t),U(t))dt + (2c) ½ Idw(t)

where w is n dimensional Brownian motion, and with initial

condition ~ (s~ ) = x0, a constant in RT
~. In (1) U is a

control with values in the control set K = Rk. We seek to

minimize

• 1T
(2) J(U) = 

]
~{J L(t,E (t),U (t))dtI-~ (S0) = x0}so -

over the class of open loop controls ~ . An open loop control

U t ’~’ is a borel measurable function on [s01T] with values in

K.

Let Q = [s0
,T] x R’~. Throughout we assume the following:

(i) The initial point (s0,x0) is a fixed constant in

and is known to the controller . There exists a unique

optimal open loop control U° for the deterministic control

- 
- 
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problem (1), (2) with e = 0.

(ii) f(t,x,u) = A(t,x) + ]3 ( t )u  with A , B smooth

functions.

(iii) L is a smooth function and there exists C0 > 0

such that V~L (s ,x,u)~’ > c iv ~
2 for all (s,x,u).

~
onccrning (ii), see the remarks in §4.

The determination of the optimal control U t for the

problem , even numerically , is impossible in general and one

seei~s approximations to U~ . We propose here such a scheme.

Let U° denote the optimal deterministic open loop control

corresponding to starting at (s0
,x~ ). We seek a “best” approxi-

— mat ion  schem e of the form VL = U 0 
+ LV.

Let ~~L denote the cost function in (2) when ~ = is

u~ eu in (1). Then we have the following result whose proof is

contained in [2 ‘~nd follows the t.~ethod of §4 in [3 1.

Theorem 1. For each klölder continuous function V ,

J~~(V
C) = .J° (U 0) + + t 2 r ( v )  + 0(L2)

where x is independent of V anu F (V) is given by

1’ (V) = J [~~~(t,~°(t),V)~~(t)V(t) +

(3)  0

+ 4 V~~(t)L~~ (t,~°(t) sU°(t))V(t)]dt .

Here •ç°(t) is the optimal trajectory for the open loop de-

tcri&iinistic control problem with initial condition =

- ~~~~ -~~--
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and ~ (s ,x , V) satisfies

~5(s,x,V) ÷ c~ (s ,x,V)t (s,x,U°(s)) +

( 4 )

+ {L
~~
(s ,x,U°(s)) + ~p~~(s , x ) B ( t ) }V(s)  = 0

on [s0,Tj X R~ with terminal condition ~ (T,x) = 0. The

function i~
0(t,x) satisfies

~~~~~~ 
+ ~°f(t ,x,U°(t)) + + L(t,x ,U°(t)) = 0

with terminal condition 4i°(T,x) 0.

0 -i.~ei.tark. i~ (t,x) is the cost ot starting at (t,x), t >

and using the open loop control U° corresponding to the initial

point (s0,x0). Note that the notational dependence of ~ on

V only indicates that for a fixed function V , ~ satisfies a

linear partial differential equation depending upon V.

Since x is independent of the choice of the Holder

continuous function V 1 let us attempt to choose V so as to

minimize the quantity r (v) . This will be considered the “best”

approximate control.

3. Solution of the ~(V) control problem.

The minimization of F(V) can be formulated as a deterministic

control problem , in fact, of a generalized linear regulator type.

1~elow , in Corollary 1 we prescribe an explicit scheme for the

calculation of the minimizing V. 
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Define g~~(t) = 
~ x~~

( t l
~~
° (t )  ,V ) ,  h~~~(t )  = 

~~~~~~~~~~~~~~~~~~~~ 
,V),

and let ~ (t) = (g
1

(t )~~~. . .i g~~ ( t ) ) ’ ~~ h(t) =

Since (t,x,V) satisfies

( -
~ ) (t ,x,V) + c (t,x ,V)f(t,x,U°(t)) + ~‘ (t,x,V)f (t,x,U°(t))x1 t xx1 x x

~

+ : °)xi
(t1

~~ 
+ uxj

(ts X iU°(t
~~ 

+ 
~~~

(t i t ~~~~~~
t) = 0

wi th  ? ( T , x , V) = 0 , then ~~~ (t )  satisfies

• d g . ( t )
= ~~~~~~~~~~~~~~~~~~~~~~~~~~ +

(7)

+ {Lux.(t ic °(t)iU°(t)) +

wi th  g~~(T)  = 0, i = l,...,n. Similarly 
~x ix j

(t
~

x 1
~

T) sat isfies

x1xj
)
t
(t1 x 1

~~ 
+ 

~xxixj
(t 1 x

~ 
t,x ,U (t)) + 

~~~~~~~~~~~~~~~~~~~~~~~~

~~~ + 
~xxi

(t
~
x 1 fx~~

(t
~
X lU°(t)) + 

~~~~~~~~~~~~~~~~~~~~~~~~

+ 
~~~~~~~~~~~~~~~~~ 

+ {L (t,x ,U0(t)) + 
~~x.x

(t1 t) }V(t )  = 0
i J  i _ J  i J

w i th  boundary condition 0 (T,x ,V) = 0, hencexi 
~ 

, - --~~~~
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dli . ( t )  n n

dt = 
~ 

1
~k 

t ) f  (t ,~°(t ) , u°( t ) )  + 
~ 
h~~f~ (t ,~°(t),u°(t))k=l i k=1 j

(9) + ~~~~~~~~~~~~~~~~~~~~~~~~ +
i .j

+ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+ x.x . (ti~
°(t B(t)}V(t)

i J  i J

with  f i n a l  condition h .  (T) = 0. The cost function becomes

(10) J4(V) = 1
T Xl 

h
~~~

( t)  + g ’ ( t ) B ( t ) V ( t )  +
J s0 i=l

4 V ’ (t ) L
~~~

(t , c ° ( t ) , U° ( t ) ) V ( t ) dt .

Thus we now have a deterministic control problem with state

equations (7), (9) with control function V and cost function

( 1 0) .  Time now runs backwards , that is , we prescribe h and g

at the final time T, but the functions g and h are un-

specified at time s0. The quantities 
~~~~~

(t,
~
°(t)) and

~ ~ 
(t,E°(t)) can be found easily using the method of

k i  j

characteristics once U0(t) is known. One simply repeats the

procedure on used in deriving equations (7) and (9).

We now formulate a generalized linear regulator problem

for

z(t) defn 
~~l’

”
~~ n’ h111

.•.h
1 ,

. .. h 11 ...h (T—t).

(of course, h .~ = h~1 so in actual numerical computation some

of the terms may be eliminated.) The equations for z can be

i i - -- •

~~~~~~~~~- -~~~~~~
— - - - : ~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1_ - 

— - - - - -



- ~~~~~~~~ 
- - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-
~~~

•-• -=—- -•---- .—
~~

w r i t t e n  in the form

(11) 
- 

= U1z + D 2 w + E ,

z(O) 0, with  cost funct ion ,

T—s 0
(12) J. (w) = K

T
Z + z TRW + ~~- w’1’

~ wit
-) J o

for  a~~uropr iate  matrices U1, D 2 , H , Q (R , Q symmetric) and

vectors E , K , and control f u n c t i o n  w ( t )  V ( T - t )

This problem can be solved using dynamic programming . Let

~~( t , z) be the opt imal  cost corresponding to the control problem

(11) , (12 )  but w i th  i n i t i a l  condition z(t) = z instead of

z ( 0 )  0. Then ~ s a t i s f i e s  the Hamilton-Jacobi equation

+ Q D 1z -

~~ 
+ KTz

(13)

+ + ~~~~~~ ÷ . W~ QWJ = 0.

The minimum in (13) is obtained when

(14)  w = + Z R J

hence (13) can be written as

+ q~~(o1z + E) + (XTz)
( 15)

- (~~~D + zTR Q i.(~ 2D2 + ZTR T 
= 0.

This equation has the solution

(16) ~(t,z) = 4 z’2n~ t)z + rT(t)z + q ( t )

~~ - ~~~~-~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~- -
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where

- - . 1 
~~ + ~~~ 1 RQ~~

l
~

T 1 PTD Q
_ 1

DTP

—R Q 1P = 0 ,

( r t ) T 
+ rTD 1 + K T

_rTD2~~~~~
p - rTD~~Q~~~l~

T = 0,

+ rTE - 4 rTD 2
Q lD~~r = 0,

and wi th  i n i t ial  conditions

c~ ( O )  = 0 , r 1 ( Q )  = 0 ,  P ( 0 )  = 0.

Us ing  (14) one obtains that the optimal feedback control is

— — 1 T T T  T(17)  w ( t , z)  = —Q [D 2 r + D
2
P z + R z ] .

Therefore  we have the following

Corol lary 1. The f u n c t i o n  V *( t )  minimiz ing  ~~(V) ~.s given by

( 18) V*(-t ) = c~( T — t , z° ( T — t ) )

where z° (t )  is the solution to (11) wi th  w = cj(t,z) and

2 ( 0 )  = 0.

4. Conclusions.

Exar~iple 1. Consider scalar equations

d~~(t )  = U ( t ) d t  + ( 2 c) ½dw(t) ,
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( U )  0 , and cost tunc tion

~.l 2 2 1 2- 

EJ [t ~~(t ) ’ + ~ (t ) ) 1- ( t )  + U ( t )  ]d t .
0

This problem is ac tua l ly  of the type considered in [ 4 1’ but

let u~ use the methods of the paper to determine the optimal

V~~. Since U0 o , then ~° ( t , x)  = ( l - t )  (x4 + 2x3 + 2x2) and

the de te rmin i s t i c  control problem for  v is the fol lowing.

1
A i n im i z e  h~~~( t )  + g 1

( t ) V ( t )  + V 2 (t)dt wi th  state equations

dg 1(t )

dt = 12 ( 1 —t )  + 4 ( 1 — t ) V ( t )  , g 1 ( 1) = 0 ,

dh 11(t )

dt = 2 4 ( 1 — t )  + 12(l—t )V (t) , h 1~~( 1) = 0 ,

over the class of open ioop controls  V ( t )  . Rather than use

t h e  procedure of Section 3 , we use Pon t ryag in ’ s maximum principle

to determine V.  V is determined from the equation

V ( t )  + g1 ( t )  + 4p
1 
(t) (l—t) + l2p 2 ( t )  ( l — t )  = 0

where p 1(t )  and p 2 (t )  are Lhe costate var iables  which sa t i s fy

dp 1 (t)

dt = — V ( t ) , p1( 0 )  0 ,

and

dp2 (t)

dt = — 1 , p 2 ( 0 )  = 0.



It is easily verified that V(t) = —3(l-(sech 2)cosh 2t)

satisfies the above equations. Recall that VC 
= U0 + cv

is then the best approximate control. The costs of using VC

and U 0 in the c-problem for  various c are listed in Table 1.

Cost Using U0 Cost using V L 
-

Cost Using tJ0

0 0 0

.04  . 0864  - .00232

.08 .1856 — .00714

.12 .2976 — .011946

.16 .4224 — .01375

.20 .56 — .00952

.24 .7104 .00388

.40 1.44 .21644

.80 4.16 3 .20844

1.00 6 7 . 0 8 2 8 8

Table 1

For c = + .12 the use of V~ realizes an approximately 4%

decrease in cost over the cost of using U°. However, note that

as c increases , the use of V~ realizes more cost than using

in the c-problem .

~~.- ~~~~~~~~~~~~~ ~~~~~~~~~~~~
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i~ertark. The “best” control approximation technique is admittedly

complex. In partial justification for such a complex scheme ,

let us show that a less complicated scheme - an accessory

stochastic control problem similar to that for the de~erm .nistic

control  problem by 1 7 ] yields a trivial and unusable soJution .

Cor ia ider  l inear s tate  equations o the  form

d~~( t ) = A ( t )~~ ( t )  + B ( t ) U ( t ) d t  ( 2 c ) ~~Idw , 
~~~~ 

= x0,

U(L) L w i th  cost f u n c t i o n  L . D e fi n e  x ( t )  = ~~(t )  —

V ( t )  = U ( t ) - U° ( t )  , then x(t) satisfies the equation

dx = A (t)x + B ( t ) V ( t ) d t  + ( 2 c ) ~~dw , x(s0) = 0, with cost function

L~ ~~(t ,~~ ( t ) , U ( t ) ) - L ( t ,~~° ( t ) , U ° ( t ) ) d t .  Since

1T
E~ L ( t ,~~ ( t )  , U ( t ) )  (~~( t ) - i ° (t ) ) + L (t ,~~° (t )  ,U ° ( t ) )  ( 0 ( t )  — U° ( t ) ) d t = 0,

j ‘~ Uso

then t h e  new cost func t ion  can be approximated by

IL° L0
( xx

Ej (x(t) ,V(t) ) ~ (x(t) ,V(t) ) ‘dt
s0 \L

0 
L
0

UX uu

0 . . . 0 0where the indicates evaluation along (t,~ (t ) ,U ( t ) ) .  If

the matrix of partial derivatives uf L is positive definite ,

then this approximate control problem is minimized by the choice

V ( t )  0 since x(s0) = 0. Thus this linearization technique to

compute a correction factor yields zero correction. However,

LX~iciplc 1 was of the above type and a correction term yielded a

lower cost than using 00 for sufficiently small c.

~~~~~~~~ - I ~~~~:i. 3~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- ~~~~ 
- A



Remark. The approximation technique described in this chapter

can also be used if B = B(t,x). h owever , the equations for

g(t), h(t) are complicated slightly by the addition of terms

involving the x-partial derivatives of B evaluated along

( t , i~
° ( t ) ) .

Remark . The or ig ina l  work on the problem was done in an Un-

• published part of the author ’s dissertation [2]. Recently ,

we have discovered the convenient solution to the auxiliary

min imiza t ion  problem which was lacking in [ 2  ] ,  and which

make the auxiliary problem tractable for large scale systems.
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